III priedas
# nasa vidutines zemes temperaturos kas ketvirti duomenu nuskaitymas ir atvaizdaviams grafiskai
nasa_data <- read.table("nasa_globtemp_ketv.txt", header = TRUE)
ndata <- nasa_data[1:509,6]
nasa_data[1:509,2]+(((nasa_data[1:509,3]/3)-1)*0.25)->nasa_data2
nasa_data2
plot(nasa_data2, ndata, type="l")
#vidurkis
mean(ndata)
# dispersija
sd(ndata) ^ 2
#acf analize
acf (ndata)
acf (ndata, 250)
#pacf analize
pacf (ndata)
pacf (ndata, 250)
fdGPH(ndata[1:500])
fd = fracdiff(ndata[1:500], nar=6, nma=5)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=6, nma=6)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=6, nma=7)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=7, nma=5)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=7, nma=6)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=7, nma=7)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=8, nma=5)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=8, nma=6)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd = fracdiff(ndata[1:500], nar=8, nma=7)
coef(fd)
fd$stderror.dpq
fd$log.likelihood
fd.arfima1 <- arima(ndata[1:500], order = c(7,0.424,7), method = "ML")
fd.arfima1
tsdiag(fd.arfima1)
fd.arfima2 <- arima(ndata[1:500], order = c(8,0.368,7), method = "ML")
fd.arfima2
tsdiag(fd.arfima2)
#realus duomenys
ndata[501:509]
fd.predict1 <- predict(fd.arfima1, n.ahead=9)
fd.predict1
sum((ndata[501:509] - fd.predict1$pred[1:9])^2)/9
sum(((abs(ndata[501:509] - fd.predict1$pred[1:9]))/ndata[501:509])*100)/9
fd.predict2 <- predict(fd.arfima2, n.ahead=9)
fd.predict2
sum((ndata[501:509] - fd.predict2$pred[1:9])^2)/9
sum(((abs(ndata[501:509] - fd.predict2$pred[1:9]))/ndata[501:509])*100)/9
plot(c(1:9), ndata[501:509], "l")
plot(c(1:9), fd.predict1$pred[1:9], "l")